Cleanroom Software Engineering

30 May 1996

Purpose and Origin:

Cleanroom Software Engineering is an engineering and managerial process for the development of high quality software with certified reliability. Cleanroom was originally developed by Dr. Harlan Mills [Mills 87]. The “Cleanroom” name was taken from the electronics industry, where a physical clean room exists to prevent introduction of defects during hardware fabrication. Cleanroom Software Engineering reflects the same emphasis on defect prevention rather than defect removal, as well as certification of reliability for the intended environment of use.

Cleanroom represents a paradigm shift from traditional, craft-based practices to rigorous, engineering-based practices. Cleanroom Software Engineering yields software that is correct by mathematically sound design, and software that is certified by statistically valid testing. Reduced cycle time results from an incremental development strategy and the avoidance of rework. The case for Cleanroom is that quality costs less. The difference in cost associated with errors found at different stages of the software life cycle is well known. By detecting errors as early as possible, Cleanroom reduces the cost of errors during development and the incidence of failures during operation; thus the overall life-cycle cost of software developed under Cleanroom can be expected to be far lower than industry average.

Usage Considerations:

Small Teams: Cleanroom teams have the goals of error-free development and failure-free product performance. A Cleanroom project team is small and works in a disciplined fashion to ensure the intellectual control of work in progress. Cleanroom teamwork involves peer review of individual work, but does not supplant individual creativity. Once the system architecture has been established and the interfaces between subunits have been defined, individuals typically work alone on a given system component. Individual designs are working drafts that are then reviewed by the team. In a large project, multiple small teams may be formed, one for the development of each subsystem, enabling concurrent engineering after the top-level architecture has been established.

Time allocation across life-cycle phases: Since one of Cleanroom’s major objectives is to prevent errors from occurring, time spent in the design phase of a Cleanroom development is likely to be greater than is traditionally devoted to design. Cleanroom is not a more time-consuming development methodology, but its greater emphasis on design and verification often yields that concern. Management understanding and acceptance of this essential point -- that quality will be achieved by design rather than through testing -- must be reflected in the development schedule. Design and verification will require the greatest portion of the schedule. Testing may begin later and be allocated less time in the schedule than is ordinarily the case. However, in large Cleanroom projects where historical data has enabled comparison of traditional vs. Cleanroom development schedules, the Cleanroom schedule has equaled or improved upon the usual development time.

Existing organizational practices: Cleanroom does not preclude using other software engineering techniques as long as they are not incompatible with Cleanroom principles. Implementation of the Cleanroom method can take place in a gradual manner. A pilot project can provide an opportunity to “tune” Cleanroom practices to the local culture, and the new practices can be introduced as pilot results build confidence among software staff.

Training Requirements: Some training will be required to implement Cleanroom methods, but it need not take place all at once. Managers need a thorough understanding of Cleanroom imperatives, and a core group of practitioners needs sufficient orientation in Cleanroom practices to be able to adapt the process for the local environment (this includes establishing a local design language, local verification standards, etc.).

Technical Detail:

The following key ideas form the foundation for Cleanroom based development:

Incremental Development Under Statistical Quality Control (SQC): Incremental development as practiced in Cleanroom provides a basis for statistical quality control of the development process. Each increment is a complete iteration of the process, and measures of performance in each iteration of the process are compared with pre-established standards to determine whether or not the process is “in control.” If quality standards are not met, testing of the increment ceases and developers return to the design stage. Feedback produced in each increment is used for project management and process improvement.

Software Development Based On Mathematical Principles: The key idea underlying the Cleanroom approach is that a computer program is an expression of a mathematical function. In Cleanroom development work, the Box Structure Method is used for specification and design, and functional verification is used to confirm that the design is a correct implementation of the specification. Verification of program correctness is performed through team review based on correctness questions. In a strict implementation of the Cleanroom method, there is no execution of code prior to its submission for independent testing.

Software Testing Based On Statistical Principles: In statistical testing, software testing is viewed as a statistical experiment. A representative subset of all possible uses of the software is randomly generated, and performance on the subset is used as a basis for conclusions about general operational performance. In other words, a “sample” is used to draw conclusions about a “population.” Under a testing protocol that is faithful to the principles of applied statistics, a scientifically valid statement can be made about the expected operational performance of the software based on its test performance.

The technical benefits of using Cleanroom translate into significant economic benefits. Direct and indirect benefits derive from a reduction in field-experienced failures, reduced cycle time, ease of maintenance due to system understandability, and longer product life. Additional indirect benefits include customer loyalty and improved competitive position.

Maturity and Results:

Initial Cleanroom use occurred in the mid to late 1980s within IBM, and project use continues to this day. Defense demonstration projects began approximately 1993. Cleanroom has been used on a variety of commercial and defense projects where reliability was critically important. More than 15 projects using Cleanroom exist; key examples include:

a.
IBM’s COBOL/SF product, which has required only a small fraction of its maintenance budget during its operating history;

b.
Ericsson’s OS-32 operating system project, which had a 70% improvement in development productivity, a 100% improvement in testing productivity, and a testing error rate of 1.0 errors per thousand lines of code (KLOC);

c.
The USAF Space Command and Control Architectural Infrastructure (SCAI) STARS Demonstration Project at Peterson Air Force Base, Colorado Springs, CO, which combined Cleanroom with the TRW (spiral) Ada Process Model and some generated and reused code to produce software at a rate of $30-40 per line of code versus a baseline average of $130 per line for software of similar complexity and development timeframe [SCAI 95].

d.
The US Army Cleanroom project at the US Army Tank-Automotive and Armaments Command, Picatinny Arsenal, NJ, which has documented a 4.2:1 productivity increase and a 20:1 return on investment after seven project increments (approximately 90 KLOC) [Sherer 96]. Additionally, this project analyzed Cleanroom against the SEI Capability Maturity Model for Software (CMM). This effort showed Cleanroom to be consistent with a large number of CMM Key Process Areas (KPAs). The combination of CMM management and organizational capabilities and Cleanroom technical practices represents a powerful process improvement paradigm [Arnold 95].

In 1995-1996, tools supporting the Cleanroom process, including usage modeling, certification testing, and the development of specifications became commercially available.

Limitations:

Cleanroom has been documented to be very effective in new development and re-engineering (whole system or major sub-units) contexts. However, an environment of piecemeal, isolated changes to a legacy system not developed using Cleanroom has not been shown to be an effective usage of this technology.

Complementary Technology -- Cleanroom and Object-Oriented Methods:

A study/analysis of Cleanroom and three major Object-Oriented analysis and design techniques (Booch, Objectory, and Shlaer-Mellor), is available [Ett 96]. The major finding is that a complementary relationship exists; Cleanroom and object-oriented methods each have strengths that can enhance the practice of the other.

Further Information:

A Cleanroom tutorial can be found on the World Wide Web at the following address:
http://www.asset.com/stars/loral/cleanroom/tutorial/cleanroom.html.

References:

[Arnold 95] Arnold, P.G., “Capability Maturity Model for Software Detailed Mapping to Cleanroom Software Engineering Process,” February 23, 1996, http://www.asset.com/WSRD/catalog.html. Also Arnold, P.G., W. H. Ett, and S.W. Sherer. “Software Process Framework: Tool to Determine Consistency with the CMM,” presented at the 7th Software Engineering Process Group (SEPG) Conference, May 1995.

[Ett 96] Ett, W. H., and C. J. Trammell. “A Guide to Integration of Object-Oriented Methods and Cleanroom Software Engineering,” February, 29, 1996, http://www.asset.com/stars/loral/cleanroom/oo/guide.html

[Mills 87] Mills, H.D., M. Dyer, and R.C. Linger. “Cleanroom Software Engineering,” IEEE Software, September 1987, pp. 19-24.

[SCAI 95] Air Force/STARS Demonstration Project Home page, http://www.asset.com/stars/afdemo/home.html

[Sherer 96] Sherer, S. W. “Cleanroom Software Engineering-the Picatinny Experience,” http://software.pica.army.mil/cleanroom/cseweb.html. Also Sherer, S. W., A. Kouchakdjian, and P.G. Arnold, “Experience Using Cleanroom Software Engineering”, IEEE Software, May 1996, pp. 69-76.

